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Test of mode coupling theory for a supercooled liquid of diatomic molecules.
I. Translational degrees of freedom

Stefan Kämmerer, Walter Kob, and Rolf Schilling
Institut für Physik, Johannes Gutenberg-Universita¨t, Staudinger Weg 7, D-55099 Mainz, Germany

~Received 16 September 1997!

A molecular-dynamics simulation is performed for a supercooled liquid of rigid diatomic molecules. The
time-dependent self and collective density correlators of the molecular centers of mass are determined and
compared with the predictions of the ideal mode coupling theory~MCT! for simple liquids. This is done in real
as well as in momentum space. One of the main results is the existence of a unique transition temperatureTc ,
at which the dynamics crosses over from an ergodic to a quasinonergodic behavior. The value forTc agrees
within the error bars with that found earlier for the orientational dynamics. In the first scaling law regime of
MCT, also called theb regime, we find that the correlators in the late stage of theb regime can be fitted well
by the von Schweidler law. Although we do not observe the critical decay predicted by MCT for the early
b-relaxation regime in its pure form, our relaxation curves suggest that this decay is indeed present. In this first
scaling regime, a consistent description within ideal MCT emerges only, if the next order correction to the
asymptotic law is taken into account. This correction is almost negligible forq5qmax, the position of the main
peak in the static structure factorS(q), but becomes important forq5qmin , the position of its first minimum.
The second scaling law, i.e., the time-temperature superposition principle, holds reasonably well for the self
and collective density correlators and different values forq. Thea-relaxation timestq

(s) andtq follow a power
law in T2Tc over two to three decades. The corresponding exponentg is practicallyq independent and is
around 2.55. This value is in agreement with the one predicted by MCT from the value of the von Schweidler
exponent but at variance with the corresponding exponentg'1.6 obtained for the orientational correlators
C1

(s)(t) andC1(t), studied in a previous paper.@S1063-651X~98!02708-1#

PACS number~s!: 61.43.Fs, 61.20.Ja, 02.70.Ns, 64.70.Pf
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I. INTRODUCTION

Although several interpretations of the glass transition
ist ~see, e.g., Ref.@1#!, the only microscopic approach lead
ing to a multitude of predictions is based upon the mo
coupling theory~MCT!. This theory, which was propose
first by Bengtzelius, Go¨tze, and Sjo¨lander @2# and
Leutheusser@3#, provides an equation of motion for the no
malized density correlator

F~q,t !5
^drq* ~ t !drq&

^drq* drq&
~1!

of a simple liquid. Note thatF depends onq5uqW u only, due
to the isotropy of the system. In its idealized version, MC
predicts the existence of a dynamical transition at a crit
temperatureTc ~or a critical densitync) from an ergodic to a
nonergodic phase, corresponding to a liquid and a glass
spectively. The nonergodicity parameter~NEP!

f ~q!5 lim
t→`

F~q,t ! ~2!

serves as an order parameter for that transition.f (q) may
change either continuously~type-A transition! or discontinu-
ously ~type-B transition! at Tc . For the structural glass tran
sition only the latter is relevant.

The test of the predictions of the ideal MCT has ch
lenged both experimental work and computer simulatio
Most of the experiments have determined the intermed
scattering functionF(q,t) or its time-Fourier transform, the
PRE 581063-651X/98/58~2!/2131~10!/$15.00
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dynamical structure factor~coherent and incoherent part!.
This yields information on the dynamics of the translation
degrees of freedom~TDOF! only. Many of these investiga
tions have been reviewed by Go¨tze and Sjo¨gren @4# and in
Refs.@5#.

Since most of the glass formers are molecular system
is also important to study the role of the orientational degr
of freedom~ODOF! and their coupling to the TDOF. A con
venient way for this is, e.g., the use of dielectric spectr
copy. Recent results from dielectric measurements@6# are
partly consistent with the predictions of MCT for simp
liquids. The interpretation of light scattering experiments
not so obvious. Since TDOF and ODOF may both contrib
to light scattering, it is not so easy to separate the orien
tional part~see, e.g., Ref.@7#!. Concerning computer simula
tions, only a few molecular liquids have been studied so
@8–15#. In a recent molecular-dynamics~MD! simulation
@16# the present authors have investigated a liquid of
atomic, rigid molecules with Lennard-Jones interactio
Apart from linear molecules with head-tail symmetry, this
the simplest choice for a molecular system. Because die
tric and light scattering measurements yield essentially o
information forq'0, we restricted ourselves to orientation
correlators withq50 and to the translational and rotation
diffusion constantD and Dr , respectively@16#. The main
result we have found is the existence of a power-law dep
dence on temperature of all the orientational relaxation tim
t l

(s)( l 5126), t l ( l 51), and ofD with a single critical tem-
peratureTc50.475, in agreement with ideal MCT. Slightl
aboveTc , the numerical results fort l

(s) , t l , andD deviate
2131 © 1998 The American Physical Society
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2132 PRE 58STEFAN KÄMMERER, WALTER KOB, AND ROLF SCHILLING
from a power law, due to ergodicity restoring process
These processes, which are not considered by the ideal M
can be accounted for by its extended version@17#. The ob-
servation that the temperature dependence ofDr does not fit
into this scheme, but bifurcates fromD at a temperature
significantly aboveTc and then obeys an Arrhenius law
rather than a power law, has been a further important re

The main purpose of the present and the following pa
@18# is the extension of our recent results@16# to finite q and
to perform a thorough test of the predictions of the id
MCT. The present paper is restricted to the TDOF on
whereas the following paper@18# considers orientational cor
relators, which explicitly contain the coupling betwee
ODOF and TDOF. Although our simulation investigates
molecular system, we make a comparison with the pre
tions of MCT for simpleliquids. The ideal MCT for simple
liquids has been recently extended to a dumbbell molecul
a simple liquid@19# and to molecular liquids of linear@20,21#
and arbitrary shaped molecules@22#. So far, the investiga-
tions of these molecular MCT equations were restricted
the calculation of the NEP@19,21,22#. For linear molecules
without head-tail symmetry, it follows from these equatio
@21# that the TDOF and ODOF freeze at a single critic
temperatureTc , consistent with our recent results forq50
@16#. The investigation of the time-dependent molecu
MCT equations, which would allow comparison with o
MD results, will be done in the future.

The outline of this paper is as follows. The next secti
will review those predictions of the ideal MCT~for simple
liquids! that will be tested. In Sec. III the model as well
some details of the computer simulation are discussed
Sec. IV we present our MD results and the final sect
contains a discussion of these results and our main con
sions.

II. MODE COUPLING THEORY

In this section we will give a short summary of tho
predictions of the ideal MCT~for simple liquids!, which will
be compared with our MD results. For details, the rea
may consult the review papers@4,5#.

Ideal MCT predicts the existence of a dynamical tran
tion atTc from an ergodic to a nonergodic phase, which is
ideal glass transition. For temperatures close toTc , MCT
predicts the existence of two scaling laws forF(q,t) with
time scalests andt(@ts), wheret is thea-relaxation time.
In the first scaling regime, i.e., fort0!t!t, the density cor-
relator takes the form

F~q,t !5 f c~q!1h~q!G~ t ! ~3!

with f c(q) the NEP atTc andh(q) the critical amplitude.t0
is a microscopic time that, for an atomic system, is of
order of 10213 sec. The reader should note that forT.Tc the
long time limit of F(q,t) is zero. However, the theory pre
dicts the existence of a time ranget0!t!t in which F(q,t)
exhibits a plateau, when plotted versus thelogarithmof time.
The height of this plateau is equal to the NEPf c(q).0.
Thus the fact that f c(q).0 does not imply that
limt→`F(q,t).0. Rather, the time range over which the p
teau is observed increases rapidly when the temperature
.
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proachesTc from above and extends up tot5` at Tc . Thus
at Tc we have limt→`F(q,t)5 f c(q) and the system has be
come nonergodic, since the correlation functions do not
cay to zero any more.

The so-calledb correlatorG(t) in Eq. ~3! obeys the first
scaling law:

G~ t !5csg6~ t/ts! ~4!

with the correlation scalecs5usu1/2 and the separation pa
rameters5s0(T2Tc), where s0.0. The s-independent
master functionsg6(s"0) are solutions of a certain scalin
equation. The correspondingb-relaxation time scalets is
given by

ts}uT2Tcu2 1/2a, T:Tc . ~5!

For g(t) one obtains the following asymptotic power laws

g~ t !}H t2a, t0!t!ts

2tb, ts!t!t.
~6!

The critical law, upper part of Eq.~6!, holds above and be
low Tc , whereas the von Schweidler law, lower part of E
~6!, is valid only above the transition point. BelowTc , g(t)
decays to a constant fort@ts . Both exponentsa andb are
related to the exponent parameterl, with 1/2,l,1, by

G~12a!2

G~122a!
5l5

G~11b!2

G~112b!
, ~7!

with G the Gamma function. From Eq.~7! one gets that 0
,a, 1

2 and 0,b<1. l is determined by the static correla
tors atTc . The result~3!, which states that in the first scalin
regime theq andt dependence factorizes, is one of the mo
important predictions of the ideal MCT.~We remind the
reader that this prediction holds only on the time sc
t0!t!t.! Due to this factorization, Eq.~3! can easily be
transformed to real space:

f~r ,t !5 f c~r !1H~r !G~ t !, ~8!

wheref(r ,t), f c(r ), andH(r ) are the Fourier transform o
F(q,t) , f c(q), andh(q), respectively.

It is important to realize that the result~6! only holds
asymptotically forT→Tc . The next order correction to bot
of these asymptotic laws was recently derived and calcula
for a system of hard spheres by Franoschet al. @23#. Correc-
tions to the von Schweidler law@24#

F~q,t !5 f c~q!2h~q!~ t/t!b1h~2!~q!~ t/t!2b2¯ ~9!

have already been studied for hard spheres by Fuchset al.
@25#. There it was demonstrated that these corrections m
be important. The expansion~9! is valid for ts!t!t, where
the a-relaxation time scalet is given by

t~T!}~T2Tc!
2g, T>Tc ~10!

with

g5
1

2a
1

1

2b
. ~11!
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PRE 58 2133TEST OF MODE COUPLING THEORY . . . . I. . . .
The translational diffusion constantD is predicted to scale
like t21. Therefore it is

D~T!}~T2Tc!
g, T>Tc . ~12!

Corrections to the critical law lead to@23#

F~q,t !5 f c~q!1h~q!~ t/t0!2a1h̄~2!~q!~ t/t0!22a1¯.
~13!

In Ref. @23# it was shown thath̄(2)(q)2h(2)(q) is propor-
tional toh(q), which allows thus a further interesting test
MCT. Unfortunately we will not be able to present in th
following the outcome of such a check of the theory, sin
the accuracy of our data forh̄(2)(q) is insufficient.

In the second scaling regime, i.e., fort of the order oft, a
master functionF̃q( t̃ ) exists such that

F~q,t,T!5F̃q„t/t~T!…. ~14!

In glass science the result~14! is called time-temperature
superposition principle. The expansion of the right-hand s
of Eq. ~14! with respect tot/t yields Eq.~9!. Equation~14!
represents the second scaling law.

Finally we mention that all these MCT results hold for t
self-part of the density correlator as well.

III. MODEL AND DETAILS OF THE SIMULATION

The model we investigate is a one-component system
rigid diatomic molecules. Each molecule is composed of t
different Lennard-Jones particles, in the following deno
by A and B, which are separated by a distanced50.5 and
each of which has the same massm. The interaction between
two molecules is given by the sum of the interaction betwe
the four particles, which is given by the Lennard-Jones
tential Vab(r )54eab$(sab /r )122(sab /r )6%, where a,b
P$A,B%. The Lennard-Jones parameters are given bysAA
5sAB51.0, sBB50.95, eAA5eAB51.0, andeBB50.8. In
the following we will use reduced units and usesAA as the
unit of length,eAA as the unit of energy~settingkB51), and
(sAA

2 m/48eAA)1/2 as the unit of time. If the atoms are argo
like, this time unit corresponds to approximately 0.3 ps.

In order to make the simulation more realistic, we did it
constant external pressurepext51.0. The length of the equili-
bration runs always exceeded the typical relaxation time
the system at the temperature considered, which allows u
conclude that in the subsequent production runs we w
investigating theequilibrium dynamics of the system. Th
temperatures we investigated areT55.0, 3.0, 2.0, 1.4, 1.1
0.85, 0.70, 0.632, 0.588, 0.549, 0.520, 0.500, 0.489,
0.477. The total number of molecules was 500 and, in or
to improve the statistics of the results, we averaged at e
temperature over at least eight independent runs. For m
details on the simulation see@16#.

IV. RESULTS

For a clearer presentation of our results, this section
divided into two subsections, where the first is devoted to
static and the second to the dynamical properties. The la
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is divided into two parts again, which are real space a
q-space representation.

A. Static properties

First of all we remark that thermodynamic quantities su
as, e.g., the average density and the enthalpy, do not ex
any signature of a singular behavior for the full temperat
range 0.477<T<5.0 that we have investigated. From this w
conclude that the observed slowing down is probably
related to an approach of the system to a critical point o
second-order phase transition. Furthermore, the regularit
the temperature dependence of the mentioned quantities
gives evidence that the system does not show any sign o
presence of a transition to an ordered phase~crystalline or
liquid crystalline! and this fact is also corroborated by inve
tigating snapshots of the configuration of the molecules.

The structural properties are one of the most interes
static features of a supercooled liquid. Figure 1 shows
static structure factorS(q) of the center of mass positions fo
different temperatures as a function ofq. Its q dependence
has the typical behavior expected for a liquid@26#, with a
main peak atqmax56.5 and a first minimum atqmin58.15 for
the lowest temperature. With increasing temperature
peak positions shift to smallerq values, due to an increase o
the average distance between the molecular centers, an
peaks become broader.

A comparison ofS(q) for T50.477 with the partial struc-
ture factorsSab(q), wherea,b refers to atomA and atomB,
is given in Fig. 2. Whereas the main peak inS(q) and
Sab(q) is essentially at the same position, the remainingq
dependence is quite different for the various correlators.
the prepeak ofSAA(q) and SBB(q) at q'3.1, which could
indicate a ‘‘medium’’ range order, we have not found a co
clusive interpretation. Note that the main reason we h
presentedS(q) is to compare itsq dependence with the stati
correlation functions of the orientational correlators p
sented in paper II. We already anticipate that thisq depen-
dence can be rather different for the various correlators.

B. Dynamical properties: Real space

To start, we discuss the self-motion of a molecule. One
the important transport coefficients is the translational dif
sion constantD, which is obtained from the mean square
displacement by

FIG. 1. Wave-vector dependence of the static structure fa
S(q) ~center of mass! for T50.477, 0.63, 1.1, and 2.0~at the main
peak from top to bottom!.
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D5 lim
t→`

1

6tN(
n51

N

^@xWn~ t !2xWn~0!#2&, ~15!

whereN is the number of molecules. The temperature
pendence ofD is presented in Fig. 3 on a double-logarithm
scale. The diffusion constant follows a power law, as p
dicted by ideal MCT@cf. Eq. ~12!#, over a surprisingly large
range of four decades inD. As critical temperature we obtai
Tc50.475 and for the corresponding exponentgD52.20.
With use of Eqs.~7! and ~11!, this yields a von Schweidle
exponentbD50.69, a critical exponentaD50.34, and an
exponent parameterlD50.67. At the two lowest tempera
tures the deviations of the numerical values forD from the
power law, which has been mentioned in the Introducti
can clearly be seen. The inset of Fig. 3 depicts the t
dependence of the mean squared displacement for all
peratures, from whichD(T) was deduced.

More detailed information on the self-motion is contain
in the self-part of the van Hove correlator:

Gs~r ,t !5K 1

N(
n51

N

d@r 2uxWn~ t !2xWn~0!u#L . ~16!

FIG. 2. S(q) ~bold solid line! and the partial structure factor
Sab versusq for T50.477;SAA ~solid line!, SBB ~dotted line!, and
SAB ~dashed line!.

FIG. 3. Temperature dependence of the translational diffus
constantD; numerical data~squares, including error bars!, power
law ~dotted line!. The solid line serves as a guide for the eye. Ins
time dependence of the mean squared displacement for all tem
tures investigated.
-

-

,
e
m-

The r dependence ofGs(r ,t) is shown in Fig. 4 for times
that are equidistant on a logarithmic time axis and for
lowest temperature. With time, thed peak att50 broadens
and for t→` and r→`, i.e., in the hydrodynamic limit, it
approaches a Gaussian distribution:

Gs~r ,t !→
1

~4pDt !3/2
expS 2

r 2

4Dt
D for t,r→`. ~17!

In the time span 5.0<t<103, where the mean squared di
placement for the lowest temperature exhibits a plateau~cf.
the inset of Fig. 3!, the shape of Gs(r ,t) depends only
weakly on time.

Another interesting conclusion can be drawn from ther
dependence ofGs for the largest time. As can be seen fro
Fig. 4, at no time is there any indication for the presence
a secondary peak atr'1, the nearest-neighbor distanc
From the absence of such a peak it is usually concluded,
e.g., Ref.@27#, that no hopping processes are present. Ho
ever, since the temperature dependence of the diffusion
stant shows deviations from the power law predicted by
ideal MCT ~see Fig. 3!, i.e., the theory in which no hopping
processes are included, we conclude that in our system
ping processesare present. Whether these processes
jumps of the molecules or only due by 180° flips of th
molecules that are observed at lower temperatures@16# is,
however, not clear. Thus we conclude that hopping proce
do not necessarily lead to a secondary peak inGs .

The r dependence ofGs is not Gaussian for a large tim
regime. The deviation from a Gaussian can be quantified
the non-Gaussian parametersan(t),n52,3, . . . @28#. Figure
5 shows

a2~ t !5
3^rW4~ t !&

5^rW2~ t !&2
21. ~18!

In the case of a Gaussian process,a2(t) vanishes. Fort
→0 and t→`, a2(t) goes to zero. But in between ther
exists a time regime for all temperatures wherea2 is sub-
stantially different from zero. The increasing part ofa2
seems to have a common envelope, as already found ea
@13,27#. This time dependence ofa2 is very reminiscent of
the one of the critical law, see Eq.~13!, i.e., on the time scale

n

t:
ra-

FIG. 4. r dependence of 4pr 2Gs(r ,t) for t50.4, 1.7, 5.88, 24.3,
101, 416, 1723, 5000, 2.53104, 105, and 3.53105 ~from top to
bottom! and forT50.477.
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PRE 58 2135TEST OF MODE COUPLING THEORY . . . . I. . . .
t0!t!t we havea2(t)5ã2(t/t0). Thus it can be expecte
that the existence of the envelope and the critical decay h
a common origin.

The time tmax(T), wherea2(t) attains its maximum@and
at which a2(t) does not fall onto the envelope anymor#
obeys a power law (T2Tc)

2ga ~see the inset of Fig. 5! with
ga'2.1, which coincides withgD , derived fromD(T), in
agreement with the results of Sciortinoet al. @13#. This sug-
gests thata2(t) for t'tmax is determined by thea relaxation
as it follows from ideal MCT. Exactly the same conclusio
also hold fora3(t).

The collective dynamics can be studied by use of the
tinct part of the van Hove correlator

Gd~r ,t !5K 1

N21 (
nÞm

d@r 2uxWn~ t !2xWm~0!u#L , ~19!

which is shown in Fig. 6 for various times and again for t
lowest temperature. Itsr andt dependence is quite similar t
that found for a binary liquid@27# and again in the time spa
5.0<t<103 its shape depends only weakly on time.

C. Dynamical properties: q space

Although the visualization of local structural properti
favors the use of a real space representation of the cor
tors, most experimental results are obtained inq space. In

FIG. 5. Non-Gaussian parametera2(t) versus time for all tem-
peratures investigated. Inset: the maximum positiontmax versusT
2Tc with Tc50.475.

FIG. 6. r dependence ofGd , normalized by the average densi
r, for the same times as in Fig. 5 and forT50.477.
ve

-

la-

addition, the translational invariance of the interactions a
suggests a theoretical description by use ofq-dependent cor-
relators. For instance the memory part of the MCT equat
for the density correlatorF(q,t) is ‘‘diagonal’’ in q space
but involves a convolution in real space.

Let us start with the self-partFs(q,t) of the collective
density correlatorF(q,t) @cf. Eq. ~1!#, which is presented in
Fig. 7 for q5qmax56.5, the position of the main peak i
S(q) ~cf. Fig. 1!. We remind the reader thatq is measured in
units ofsAA . The small bump inFs(q,t) at ts>12 is due to
a sound wave andts is the time for the sound wave t
traverse the box size of our sample. This effect was a
observed by Lewiset al. @10# and has recently been shown
be much more pronounced in strong glass formers@29#.

For the highest temperature,T55.0, the decay ofFs(q,t)
is essentially exponential. With decreasing temperature
relaxation crosses over into a two-step process, as pred
by MCT. The change from the fast exponential relaxation
a much slower one in which a pronounced plateau is fou
can be interpreted as a crossover of the system from an
godic to a quasinonergodic behavior, since on the time s
at which the plateau is observed the system is not ergo
For the lowest temperature,T50.477, a ‘‘quasiplateau’’ can
be seen. Its height is a measure of the critical NEPf s

c(q).
The reader should note that for all temperaturesFs(qmax,t)
decays to zero for large times, indicating that the length

FIG. 7. ~a! Time dependence of the self-partFs for q5qmax

56.5 for all temperatures investigated.~b! Fs(qmax,t) versus re-
scaled time. The eight curves~solid lines! on the left refer to the
eight lowest investigated temperatures and the one farthest to
right ~dashed-dotted curve! corresponds to the highest temperatu
T55.0. The von Schweidler law including corrections@cf. Eq. ~9!#
is represented by the dotted line, and a KWW fit is shown dash
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the runs is large enough to equilibrate the system. In orde
test MCT, we have determined thea-relaxation times
tq

(s)(T) from the conditionFs(q,tq
(s))51/e. Its temperature

dependence is shown in Fig. 8~squares! for q5qmax56.5
and q5qmin58.15. UsingTc 5 0.475, as determined from
D(T), both relaxation times follow a power law over abo
three decades. The correspondingg values are practically the
same g (s)52.56, but differ significantly fromgD52.20.
Such a discrepancy betweengD andg (s) has been observe
already before@27# and indicates that the MCT predictio
that the two exponents should be equal is not valid for th
systems.g (s)52.56 yields the von Schweidler exponentb
50.55 and the exponent parameterl50.76. We also note
that a power-law fit withTc as a free parameter yields
value forTc that coincides withTc50.475 to within 2%.

The relaxation timetq
(s)(T) can now be used to resca

time in order to test the validity of the time-temperature s
perposition principle@Eq. ~14!#, which is done in Fig. 7~b!.
We find that the relaxation curves fall indeed onto one m
ter curve for the lowest temperatures. The late stage re
ation can be fitted well by a Kohlrausch-Williams-Watts la
~KWW!, i.e., Fs(q,t)5Aexp@2(t/t(s))b#, dashed curve. Fo
higher temperatures~cf., e.g., the curve forT55.0) no such
scaling exists. We also note that such a scaling wasnot pos-
sible for certain types oforientational correlation functions
@16#, which shows that this prediction of MCT is not a trivia
one.

Having demonstrated the validity of the second scal
law @Eq. ~14!#, we can test whether the von Schweidler la
including the next order correction@Eq. ~9!#, fits the master
curve well in the lateb-relaxation regime. As can be see
from Fig. 7~b!, this type of fit works very well~dotted line!.
In practice, this has been done forFs(q,t) at the lowest
temperature by keepingb fixed to 0.55~deduced fromg (s)).
The wave-vector dependence off s

c(q), h̃s(q), and h̃(2)s(q)
is shown in Fig. 9. Here a comment is in order. The fit of t
data with the von Schweidler law including the next ord
correction yieldst2bhs(q) and t22bh(2)s(q) @cf. Eq. ~9!#.
Since theq-independenta-relaxation time scalet(T) can
only be determined up to aT-independent factor, the same
true for hs(q) and h(2)s(q). In Fig. 9 we therefore show

FIG. 8. a relaxation timestq versusT2Tc : open diamonds
from F(qmax,t), filled diamonds fromF(qmin ,t), open squares from
Fs(qmax,t), filled squares fromFs(qmin ,t). The dashed lines are
guide for the eye and both solid lines represent fits with a po
law.
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h̃s(q)5t2bhs(q) and h̃(2)s(q)5t22bhq
(2)s(q). The q varia-

tion of these quantities is quite similar to that for ha
spheres@25#. Particularly we also find a zero ofh̃(2)s(q) at a
finite q value q0'3.5 with h̃(2)s(q),0 (.0) for q
,q0 (q.q0). Taking into account thatq for the hard sphere
system is given in units of the diameterdHS51, we can
deduceq0

HS'12 from Ref. @25#. That this is about three
times larger than our value is partly due to a larger effect
diameterdeff'1.5 of our molecules, compared todHS51.

We now turn to the collective dynamics as obtained fro
the density correlatorF(q,t), which is presented for
q5qmax and q5qmin in Figs. 10~a! and 10~b!, respectively.
The time dependence looks similar to that ofFs(q,t), but the

r

FIG. 9. Wave-vector dependence off s
c(q) ~solid line!, critical

amplitudeh̃s(q) ~dotted line!, and the correctionh̃(2)s(q) ~dashed
line!.

FIG. 10. Time dependence ofF(q,t) for all temperatures inves
tigated.~a! q5qmax56.5, ~b! q5qmin58.15.
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height of the ‘‘quasiplateau’’ is much lower and the stretc
ing of the relaxation is more pronounced for the case oq
5qmin . The a-relaxation timetq(T) has been determine
from the conditionF(q,tq)50.1, since using thee21 defi-
nition of t would lead to an underestimation of thea-
relaxation time forq5qmin , since the plateau is so low.~We
note that choosinge21 instead of 0.1, for the case whe
both definitions can be used, or even using a KWW fit
deducetq(T), leads to essentially the same temperatu
dependence.! The temperature dependence oftq is shown in
Fig. 8. Taking againTc 5 0.475 as given,tq(T) obeys a
power law, withgqmax

52.57'g (s) andgqmin
52.47. It is re-

markable that the range for the power law forq5qmin is
almost one decade less than forq5qmax, which shows that
different correlators reach the asymptotic regime at differ
temperatures.

Figure 11 shows that also for these correlation functio
the second scaling law holds and that it holds better forqmax
than for qmin . The reader should also notice that these t
correlation functions behave quite similar to the correspo
ing ones of a hard-sphere system~cf. Fig. 17 in Ref.@23#!.
The late stage relaxation can again be fitted well by a KW
law ~dashed line!. Since the curves for the different temper
tures fall onto a master curve, it is sufficient to focus on
curve for the lowest temperature in order to test whether
first scaling law holds. The results of our analysis are sho
in Figs. 12 forq5qmax andq5qmin. Let us discussq5qmax
first. As can be seen from Fig. 12, the von Schweidler la

FIG. 11. F(qmax,t) ~a! and F(qmin ,t) ~b! versus rescaled time
The eight curves~solid lines! on the left refer to the eight lowes
temperatures and the one farthest to the right~dashed-dotted curve!
corresponds to the highest temperatureT55.0. The dashed line is a
fit with a KWW law.
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with b50.55, which corresponds tol50.76, the same value
we used to fit the von Schweidler law toFs(q,t), fits the data
over about 2.5 decades in time~long dashed line!. Taking
into account the next order correction@cf. Eq. ~9!# leads to a
significant improvement of the fit fort>43104 ~solid line!.
We have also fitted the numerical data with theb correlator
with ~dotted line! and without~short dashed line! correction.
This was done by solving the equation forg2(t/ts) ~see Ref.
@5#! and making use of Eqs.~3! and ~4!. Here we encounter
the same problem as we did for the fit with the von Sc
weidler law, because theb relaxation timets can only be
determined up to aT-independent factor. In order to procee
we have chosen forts the position of the inflection point o
F(qmax,t), indicated in Fig. 12 by a filled circle. The opti
mum valuesl50.76 andts569 stemming from that fit were
used for the analogous fits to all the other correlators of
present paper and of Ref.@18#, except for the orientationa
correlators withl 51 @18#. From the figure we recognize tha
in the lateb-relaxation regime these fits are identical to t
ones of the von Schweidler law, as it should be. In the ea
b-relaxation regime, however, theb correlator fits the data
much better than the von Schweidler law, since part of
approach to the plateau is fitted well also. In this earlyb-
relaxation regime, MCT predicts the critical law@Eq. ~13!#.
Due to this result the relaxation onto the plateau forT near
Tc should be stretched. This stretching can clearly be se
e.g., in Fig. 11 forq5qmin, by noticing how gentle the
curves approach the quasiplateau. A further indication of
critical law is the existence of an inflection point on a log
rithmic time scale at a time of orderts . This inflection point
can easily be observed in Fig 11 as well. However, a fit w
the critical lawt2a or even with the leading and next leadin
order @Eq. ~13!# is possible but extends at most over o
decade in time.

For q5qmin it is not possible to obtain a good fit with th
von Schweidler law alone, ifb is kept fixed at 0.55. Ifb is
used as a free parameter, a satisfactory fit is obtained b
the cost of aq-dependent von Schweidler exponentbq , in
contradiction to the spirit of MCT. Since the critical NE
obtained from this fit are rather structureless and do

FIG. 12. F(q,t) versust for T50.477: numerical data~bold
dots!, b correlator withl50.76 ~short dashed line!, b correlator
with l5 0.76 including the next order corrections in the vo
Schweidler regime~dotted line!, von Schweidler law withb50.55

(5̂l50.755) ~long dashed line!, von Schweidler law withb50.55
including the next order corrections~solid line!.
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qualitatively agree with the NEP obtained from solving t
molecular MCT equations@22#, we decided to keepb50.55
~obtained fromg (s)) fixed and to take the next order corre
tion into account. With this approach we obtained go
agreement between all NEP from our MD simulation a
those from the MCT equations@22#. But even if the first
correction to the von Schweidler law@cf. Eq. ~9!# is taken
into account, the fit with Eq.~9! works well for only about
one decade in time. On the other hand, the critical correl
~with l50.76! including the correction ~on the von
Schweidler side! fits the data over two decades. Neverth
less, this range is significantly smaller than the one found
q5qmax, which shows that corrections to the scaling la
might be more important forqmin than forqmax.

The quantitiesf c(q), h̃(q), and h̃(2)(q), depicted in Fig.
13, were determined in a similar way as for the self-part, i
by keeping the value ofb fixed to 0.55. Comparing thes
quantities withS(q) ~Fig. 1! we find that f c(q) is in phase
and bothh̃(q) and h̃(2)(q) in antiphase withS(q). We note
that the peak atq'3 in f c(q) does not exist forS(q). How-
ever, whether this peak is real or just a statistical fluctuat
cannot presently be decided for sure. Since the orientati
static correlatorS11

0 (q) has a pronounced maximum
q'3 ~see Ref.@18#!, one might be tempted to relate th
prepeak off c(q) to the translation-rotation coupling.

The variation off c(q) andh̃(q) with q resembles the one
found, e.g., for hard spheres@25#, for a binary liquid@27,30#,
and that for water molecules@31#. Interestingly theq depen-
dence ofh̃(2)(q), which is in phase with that ofh̃(q), quali-
tatively agrees with that found by Fuchset al. for hard
spheres@25#. However, in contrast to the hard-sphere syste
h̃(2)(q) does not change sign for theq regime we have stud
ied, but vanishes atq5qmax at which it has a minimum. This
fact explains why the~asymptotic! von Schweidler law fits
the data rather well forq5qmax, whereh̃(2)(q)'0, but not
for q5qmin . To conclude, we show in Fig. 14 that also th
variation of thea-relaxation timetq with q is in phase with
S(q), which is in close analogy with, e.g., the hard sphe
system@25#.

V. DISCUSSION AND CONCLUSIONS

There were two reasons for doing the investigations p
sented in this paper. On the one hand, we wanted to s

FIG. 13. Wave-vector dependence off c(q) ~filled squares!,

h̃(q) ~open circles!, andh̃(2)(q) ~open diamonds!.
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how in a molecularsupercooled liquid the translational de
grees of freedom~TDOF! slow down when the temperatur
of the system is decreased in order to allow a compari
with ~i! the corresponding slowing down in atomic system
that have been studied by other investigators and~ii ! the
slowing down of the orientational degrees of freedo
~ODOF! of the same system and which will be presented
the following paper@18#. On the other hand, we wanted t
test whether also for this molecular system the dynamics
the TDOF can be described by the ideal version of MCT
simple liquids.

The system we have investigated consists of rigid
atomic molecules without head-tail symmetry. The Lenna
Jones interactions we used for the molecular system are
so different from those of the binary liquid@27# with 80%A
and 20%B atoms. The main difference between both sy
tems is of course that for the present model the 50%A and
50% B atoms are pairwise connected in order to form
atomic molecules. Therefore, the comparison of the dyna
cal behavior of both systems allows us to discuss the in
ence of the ODOF on the TDOF.

Our test was mainly concerned with~i! the existence of a
single critical temperatureTc and~ii ! the validity of the pre-
dictions of the ideal MCT in the two scaling law regime
The existence of such a single critical temperature indicat
strong coupling between TDOF and ODOF. Although t
mathematical structure of the MCT equations for molecu
liquids @19–22# differs from the one of simple liquids, we
expect that the two scaling laws hold for molecular liquid
too. This belief is based upon the fact that the first scal
law is always valid in a so-called type-B transition~i.e., the
NEP changesdiscontinuouslyat the transition!, the type of
transition that is relevant for structural glasses@5#. Further-
more, we expect the existence of asingletransition tempera-
ture for linear and arbitrary molecules without addition
symmetry, as is the case for simple liquids.

TakingTc andg as free parameters, thea relaxation times
tq

(s) and tq for q5qmax and q5qmin can be fitted with a
power law. The resultingTc’s differ from Tc50.475 @de-
duced fromD(T)] by less than 2%. The same value ofTc
was found for the orientational correlation functions in R
@16# and we therefore conclude that our data are compat

FIG. 14. Comparison ofS(q) ~solid line! for T50.477 and the
a-relaxation timetq ~filled squares! for T50.477, wheretq has
been multiplied by 1025. Inset: The same quantities on a logarit
mic scale.
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with the existence of a single transition temperature. T
sharp transition atTc , as predicted byideal MCT, is, how-
ever, smeared out, due to ergodicity restoring processes
can be accounted for by the extended MCT@17#. These pro-
cesses are often associated with a hopping of the atom
molecules, as it has been demonstrated for a binary sim
liquid @32#. One possible piece of evidence for such hopp
processes is the occurrence of a second peak inGs(r ,t) at
r'1 for large times@32#. However, no such peak is ob
served in our results, even beyond ther range shown in Fig.
4. The absence of hopping processes with respect to
TDOF was also found in the MD simulation of CKN@8#.
Therefore, only orientational jumps remain, which inde
have been shown to be present@16#. Comparing the different
values ofg, one finds that those determined fromFs(q,t)
andF(q,t) fluctuate around 2.55. The same is more or l
true for the purely orientational correlatorsCl

(s)(t) andCl(t)
@17# for l .1, but not for l 51, whereg1

(s)51.66 andg1

51.52 was found. Therefore, we can conclude that, apar
the casel 51, g has essentially the same value for all co
elators. We also note that in an MD simulation of sup
cooled water no such exceptional behavior ofl 51 was ob-
served@13#.

For all the correlators related to the TDOF, the seco
scaling law is reasonably well fulfilled. This is in contrast
our findings forC1

(s)(t) and C1(t) @16#. Only for relatively
large values ofl do theCl

(s)(t) show the second scaling law
Regarding the first scaling law, we can say that it wo

well for Fs(q,t) and F(q,t). For q5qmin we have demon-
.
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strated that the next correction to the von Schweidler l
becomes important. We stress that a consistent descriptio
our data in the framework of MCT is only possible by takin
this correction into account. If this is not done,
q-dependenteffectivevon Schweidler exponent and a rath
structurelessq variation of the orientational NEP~which will
be discussed in the following paper@18#! results. The critical
law manifests itself by a stretched relaxation onto the plat
with height f s

c(q) and f c(q), respectively. But for our system
a convincingquantitativeproof for the existence of thet2a

law is not possible.
In summary, we conclude that, with respect to ideal MC

the TDOF of our molecular system behave quite similarly
those of a binary simple liquid@27#. Hence, the qualitative
features of the dynamics of TDOF are not altered by
coupling to ODOF. Although a single transition temperatu
for TDOF and ODOF can be specified, part of the orien
tional dynamics as measured, e.g., byC1

(s)(t), does not fit
into the framework of ideal MCT@16#. Whether this is only
due to the 180°-reorientational jumps@16# is presently not
clear.
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